Понятия со словосочетанием «арифметические задачи»
Связанные понятия
Числовой ребус, также арифметический ребус, крипторитм (cryptarithm), альфаметик (alphametic) — математическая головоломка, пример арифметического действия, в котором все или некоторые цифры заменены буквами, звёздочками или другими символами. Задание состоит в том, чтобы восстановить исходную запись примера.
Элементарная математика — несколько неопределённое понятие, охватывающее те разделы математики, которые изучаются в средней школе.
Математическая головоломка — задача занимательной математики с игровыми элементами (правилами возможных действий, иногда — сюжетом), требующая в большей степени сообразительности, нежели математической подготовки или специальных знаний.
Заучивание наизусть (также зубрёжка)— метод запоминания, заключающийся в многократном устном повторении текста за небольшой промежуток времени.
Табли́ца умноже́ния, она же табли́ца Пифаго́ра — таблица, где строки и столбцы озаглавлены множителями, а в ячейках таблицы находится их произведение. Используется для обучения школьников умножению.
Вычисле́ние — математическое преобразование, позволяющее преобразовывать входящий поток информации в выходной, с отличной от первого структурой. Если смотреть с точки зрения теории информации, вычисление — это получение из входных данных нового знания.
Литоре́я (от лат. littera — буква) — тайнописание, род шифрованного письма, которое употреблялось в древнерусской рукописной литературе. Известна литорея двух родов: простая и мудрая. Простая, иначе называемая тарабарской грамотой, заключается в следующем: поставив согласные буквы в два ряда, в порядке...
Развлекательная математика, занимательная математика, математические развлечения — направления и темы в математике, проявляющиеся в бо́льшей степени в рамках досуга, развлечения, самообразования и популяризации математики, нежели в профессиональной математической деятельности. «Основная аудитория» развлекательной математики — обучающиеся математике, любители, хотя разработками и исследованиями в занимательной математике занимаются как любители, так и специалисты. Одна из характерных черт развлекательной...
Бессоюзное сложное предложение — это сложное предложение, в котором простые предложения объединены в одно целое по смыслу и интонационно, без помощи союзов или союзных слов: : (А. Пушкин)
Планиме́трия (от лат. planum — «плоскость», др.-греч. μετρεω — «измеряю») — раздел евклидовой геометрии, изучающий двумерные (одноплоскостные) фигуры, то есть фигуры, которые можно расположить в пределах одной плоскости: треугольники, окружности, параллелограммы и т.д.
Орфограмма — правильное написание по соответствующему правилу или по традиции, избираемому из нескольких возможных. Является одной из основных единиц орфографии.
Евкли́дова геоме́трия (или элементарная геометрия) — геометрическая теория, основанная на системе аксиом, впервые изложенной в «Началах» Евклида (III век до н. э.).
Символьные вычисления — это преобразования и работа с математическими равенствами и формулами как с последовательностью символов. Они отличаются от численных расчётов, которые оперируют приближёнными численными значениями, стоящими за математическими выражениями. Системы символьных вычислений (их так же называют системами компьютерной алгебры) могут быть использованы для символьного интегрирования и дифференцирования, подстановки одних выражений в другие, упрощения формул и т. д.
Арифме́тика (др.-греч. ἀριθμητική (árithmitikí) — от ἀριθμός (árithmós) «число») — раздел математики, изучающий числа, их отношения и свойства. Предметом арифметики является понятие числа (натуральные, целые, рациональные, вещественные, комплексные числа) и его свойства. В арифметике рассматриваются измерения, вычислительные операции (сложение, вычитание, умножение, деление) и приёмы вычислений. Изучением свойств отдельных целых чисел занимается высшая арифметика, или теория чисел. Теоретическая...
Таблицы Бра́диса — математическое пособие, в котором собраны таблицы, необходимые для работы по курсу математики и для практических вычислений. Точность — 4 знака (четырехзначные).
В теории вычислимости
алгоритмически неразрешимой задачей называется задача, имеющая ответ да или нет для каждого объекта из некоторого множества входных данных, для которой (принципиально) не существует алгоритма, который бы, получив любой возможный в качестве входных данных объект, останавливался и давал правильный ответ после конечного числа шагов.
Комбинаторное мышление — способность решать комбинаторные задачи. Проблема развития комбинаторного мышления, в частности у детей, изучается в психологии. Формирование комбинаторного мышления требует специальных педагогических методов, поскольку самостоятельно такое мышление не формируется.
Геометрическая алгебра — историческое построение алгебры во второй книге «Начал» Евкида, где операции определялись непосредственно для геометрических величин, а теоремы доказывались геометрическими построениями.
Двоичная система счисления — позиционная система счисления с основанием 2. Благодаря непосредственной реализации в цифровых электронных схемах на логических вентилях, двоичная система используется практически во всех современных компьютерах и прочих вычислительных электронных устройствах.
Аксио́мы Пеа́но — одна из систем аксиом для натуральных чисел, введённая в XIX веке итальянским математиком Джузеппе Пеано.
Составно́е число́ (в XIX веке также сложное число) — натуральное число, бо́льшее 1, не являющееся простым. Каждое составное число является произведением двух или более натуральных чисел, бо́льших 1.
Элемента́рная а́лгебра — самый старый раздел алгебры, в котором изучаются алгебраические выражения и уравнения над вещественными и комплексными числами.
Метаматематика — раздел математической логики, изучающий основания математики, структуру математических доказательств и математических теорий с помощью формальных методов. Термин «метаматематика» буквально означает «за пределами математики».
Математическая константа или математическая постоянная — величина, значение которой не меняется; в этом она противоположна переменной. В отличие от физических постоянных, математические постоянные определены независимо от каких бы то ни было физических измерений.
Правило сложения (правило «или») — одно из основных правил комбинаторики, утверждающее, что, если элемент A можно выбрать n способами, а элемент B можно выбрать m способами, то выбрать A или B можно n + m способами.
Комбинато́рика (комбинаторный анализ) — раздел математики, изучающий дискретные объекты, множества (сочетания, перестановки, размещения и перечисления элементов) и отношения на них (например, частичного порядка). Комбинаторика связана с другими областями математики — алгеброй, геометрией, теорией вероятностей и применяется в различных областях знаний (например, в генетике, информатике, статистической физике).
Артикуляционная база — в фонетике — совокупность приспособлений речевого аппарата к образованию звуков того языка, на котором человек общается.
Чистая математика — полностью абстрактная математика, которая, в отличие от прикладной математики, изучает абстрактные структуры без соотношения их с объектами реального мира. В чистую математику включают арифметику, алгебру, высший анализ (функциональный анализ, анализ бесконечно малых величин, а также дифференциальное исчисление, интегральное исчисление и вариационное исчисление), теорию чисел, геометрию, тригонометрию.
Прикладна́я матема́тика — область математики, рассматривающая применение математических методов, алгоритмов в других областях науки и техники. Примерами такого применения будут: численные методы, математическая физика, линейное программирование, оптимизация и исследование операций, моделирование сплошных сред (Механика сплошных сред), биоматематика и биоинформатика, теория информации, теория игр, теория вероятностей и статистика, финансовая математика и актуарные расчёты, криптография, а следовательно...
Явное знание — вид знания, которое легко формализуется и систематизируется, то есть легко передаётся. Оно не требует постоянных тренировок для его получения, как, например, неявное знание. Человек может самостоятельно ему научиться, пользуясь ясными и чётко сформулированными правилами данного знания. К явным знаниям относятся, например, многие науки, такие как математика, физика, история и лингвистика.
Комбинато́рная литерату́ра, литература формальных ограничений — литературные произведения, созданные на основе формального комбинирования тех или иных элементов текста (букв, слов, фраз, строк, абзацев): их перестановок, сочетаний, повторений, выделения или намеренного отсутствия. Таким образом, комбинаторная литература строится в соответствии с некоторыми формальными правилами, или ограничениями.
Понимание текста — умственная деятельность, в результате которой содержание текста становится доступным читающему.
Конспект урока — подробное и полное изложение содержания и хода урока, отражающее совместную деятельность учителя и учащихся.
Изокли́на (от др.-греч. ίσος «равный, одинаковый, подобный» + κλίνω «клонить, наклонять») дифференциального уравнения первого порядка — кривая на плоскости, вдоль которой поле, задаваемое дифференциальным уравнением, имеет один и тот же наклон.
Перечислительная комбинаторика (или исчисляющая комбинаторика) — раздел комбинаторики, который рассматривает задачи о перечислении, то есть подсчёте количества, или непосредственного построения и перебора, различных конфигураций (например, перестановок), образуемых элементами конечных множеств, на которые могут накладываться определённые ограничения, такие как: различимость или неразличимость элементов, возможность повторения одинаковых элементов и т. п.
Теория чисел, или высшая арифметика, — раздел математики, первоначально изучавший свойства целых чисел. В современной теории чисел рассматриваются и другие типы чисел — например, алгебраические и трансцендентные, а также функции различного происхождения, которые связаны с арифметикой целых чисел и их обобщений.
Усвое́ние языка́ — процесс обучения человека языку, исследуемый лингвистами. Обычно фраза обозначает усвоение родного языка ребёнком, в противовес термину усвоение второго языка, под которым понимается процесс приобретения навыков общения на новом иностранном языке, независимо от числа ранее выученных.
История арифметики охватывает период от возникновения счёта до формального определения чисел и арифметических операций над ними с помощью системы аксиом. Арифметика — наука о числах, их свойствах и отношениях — является одной из основных математических наук. Она тесно связана с алгеброй и теорией чисел.
Число́ — основное понятие математики, используемое для количественной характеристики, сравнения, нумерации объектов и их частей. Письменными знаками для обозначения чисел служат цифры, а также символы математических операций. Возникнув ещё в первобытном обществе из потребностей счёта, понятие числа с развитием науки значительно расширилось.
Математи́ческая ло́гика (теоретическая логика, символическая логика) — раздел математики, изучающий математические обозначения, формальные системы, доказуемость математических суждений, природу математического доказательства в целом, вычислимость и прочие аспекты оснований математики. В более широком смысле рассматривается как математизированная ветвь формальной логики — «логика по предмету, математика по методу», «логика, развиваемая с помощью математических методов».
Элементарные функции — функции, которые можно получить с помощью конечного числа арифметических действий и композиций из следующих основных элементарных функций...
Формализа́ция — представление какой-либо содержательной области (рассуждений, доказательств, процедур классификации, поиска информации, научных теорий) в виде формальной системы или исчисления.
Синтаксическая ошибка может возникать при некорректном вводе уравнения в калькулятор. Это может быть вызвано, например, путём открытия скобок без их закрытия, или, реже, вводом нескольких десятичных разделителей подряд.
Арифметика Пресбургера — это теория первого порядка, описывающая натуральные числа со сложением, но в отличие от арифметики Пеано, исключающая высказывания относительно умножения. Названа в честь польского математика Мойжеша Пресбургера, который в 1929 году предложил соответствующую систему аксиом в логике первого порядка, а также показал её разрешимость.
Рациональный тип данных — способ представления рациональных чисел используемый в программировании. Рациональные числа в ЭВМ представляются таким образом, чтобы отдельно хранить числитель числа, а отдельно знаменателя числа, что позволяет избежать проблему округления чисел при выполнении математических операций, как это бывает при использовании переменных хранимых в форме с плавающей запятой или фиксированной запятой. Математические операции над рациональными числами моделируются программно. В некоторых...
Книга абака (лат. Liber abaci) — главный труд Фибоначчи (Леонардо Пизанского), посвященный изложению и пропаганде десятичной арифметики. Книга написана в 1202 г., вторая переработанная редакция — 1228 г., посвящена Майклу Скоту. До наших дней дошла только вторая версия.